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DEVELOPMENT OF INITIAL PERTURBATIONS
OF THE EXTERNAL BOUNDARY OF AN EXPANDING
GAS -~ LIQUID RING

S. V. Stebnovskii UDC 532,529

In studies of surface phenomena related to underwater explosions, in particular, in studying the process
of splash dome formation, the development of perturbations in the initial stage of free surface motion is of
interest. A convenient model to use in such studies is that of the flow occurring upon explosion of a cylindrical
charge in a cylindrical liquid ring, where the free surface form coincides with that of the charge. The stability
of an expanding liquid ring has been considered in a2 number of studies. '

Thus, assuming an ideal incompressible liquid, [1] considered the stability of initial perturbations of a
thin liquid ring expanding inertially. Tt was shown that in the general case such motion is unstable; introduction
of surface tension has a stabilizing effect on harmonics. But in the case where the liquid motion takes place
under the stimulus of impulse loading, commencement of liquid motion is preceded by exit of a shock wave
onto the liquid surface, as a result of which the reflected unloading wave destroys the continuity of the liquid
medium. Thus in this case the validity of using stability estimates obtained in problems concerning expansion
of a continuous liquid ring is questionable.

The present study is an experimental investigation of the development of initial perturbations on the ex~
ternal surface of an expanding gas—liquid ring. Such a flow was realized in the following manner. Along the
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Fig. 2

axis of symmetry of a cylindrical liquid volume 1 (Fig. 1) a cylindrical charge 2 was placed (electrical deto-

nator EDV-1);the charge radius Ry, (0) =0.35 cm; the initial radius of the external surface of the liquid cylinder
Rys (0) was varied over the range 3=m =R (0)/Ry{0)=10; p is the liquid deunsity and ¢ its surface tension co-

efficient. The liquids used were water and glycerine. The initial length of the liquid cylinder H=3 cm. The '
cylinder ended in rigidly mounted massive steel disks 7 em in radius. The outer cylinder surface was formed
by a thin paper shell.

The initial stage of liquid expansion was recorded with an SFR~1 high-speed photorecorder. For this
purpose the steel face disks confining the cylindrical volume were provided with transparent slit windows.
Figure 2 shows the initial stage of the process, It is evident that immediately after charge explosion and shock
wave exit to the free surface the liquid medium becomes opagque because its structure is disrupted — continuity
is destroyed behind the front of the converging cylindrical unloading wave. In the very first stage of expansion
of the gas—liquid layer thus formed on the free surface one can see a growth in initial perturbations. The con-
tinuation of this process was recorded with a Pentazet~16 motion-picture camera.

Thus, expansion of the gas—liquid layer is caused by the initial velocity imparted to the liquid after exit
onto its surface of the shock wave, and also by expansion of the explosion bubble; braking of the layer occurs
due to interaction with the surrounding air medium.

In Fig. 3a~f a graph of expanding gas ~liquid ring radius versus time is shown, together with photographs
of the developing perturbations on the external surface, for the case of a water cylinder m =5. The exposures
b-f correspond to times t=0, 0.5°107%, 1073, 2°1073, 3.107° gec. The second frame shows an enlargement of a
portion of the gas —liquid layer in which high-frequency perturbations can be seen, It is evident from the photo~
graphs that initially when the layer expansion rate is very high, perturbations develop on its surface over a
wide frequency range. But then the expansion rate falls off rapidly and the development of high-frequency
perturbations is suppressed. The character of perturbation development is similar in other cases. Figure 4
shows the radius of the gas—liquid layer as a function of time; 1, glycerine cylinder m =10; 2, water cylinder
m =10, 3, glycerine cylinder m =3; 4, water cylinder m =3. Figure 5 shows the corresponding motion-picture
frames of perturbation development on the surface of the expanding gas —liquid layers: a, c, glycerine; b, d,
water. It follows from analysis of the curves and photographs that the larger the value of m, the slower the
expansion rate ralls off and the weaker the damping of high-frequency perturbations. I we compare the pertur-
bation development of water and glycerine at identical m values, the water shows a higher frequency character.

Since analysis of the photographs and curves shows that with decrease in layer expansion rate the fre-
quency of the perturbations which develop decreases, and moreover, it is known that surface tension is always
a stabilizing factor in perturbation development, it will be of interest fo analyze the behavior of perturbations
as a function of the dimensionless parameter W =w §)R}, &)/{0/Ry; €)1, which characterizes the ratio of inertial
to capillary forces. Here the mean (over volume) density of the gas —liguid layer w ) is defined as the ratio
of the mass of the original cylindrical liguid layer to the current volume of the expanding gas~liquid ring € ¢)
and the density of the air component pgy: w ) 'fsprr[R%i (O)_R%z ©OYxXB/Q &) +pg. The value of Q ¢) is measured ex-
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perimentally from the motion-picture frames, in which the expansion process was photographed in two pro-
jections. Each frame of Fig. 5 shows the value of W ¢) calculated in this manner. @t is evident from Fig. 5
that the parameter W ¢) does in fact characterize the behavior of the perturbations: As it decreases the fre-
quency of perturbations on the outer surface of the gas—liquid layer decreases; the highest rate of decrease
of W¢) with time occurs in the air ~water layer with m =3, and this case shows the most rapid damping of
high~frequency perturbations; the lowest rate of decrease of W¢) occurs in the air —glycerine layer with m =
10, and in this case the perturbations of the ring surface show the highest frequencies

The parameter W ¢) can be written in the fprm
o (B2 (1) 4R (0)/22aR, (o (1) RY (/2 E()

= i =4We =2 = 4WeE(t),
o/R, (1) 20/R, (0) 2nR ), (0) pR2, (0)/2 E(0)

W () = 1)
where We =[p1'2%1 0)/21/120/Ry; (0)] is the Weber number, characterizing the ratio of the specific kinetic energy
in the liquid ring to the free surface energy at the initial moment; E ¢) is the kinetic energy of a surface layer
of unit thickness with a mean density over volume of w. Thus, the character of development of the initial per-
turbations of the outer surface of the expanding gas—liquid layer is defined by the ratio of inertial and capillary
forces.

It is of interest to compare the mechanisms of initial perturbation development on the outer surfaces of
expanding gas-liquid rings and rings of an ideal incompressible liquid. For this purpose an analytical evalu-
ation was made of the upper frequency limit of exponentially increasing perturbations of an expanding liquid
ring in the initial time period.

In a polar coordinate system r, ¢, fixed to the point (Fig. 1), at time t =0 on the radii of the inner and
outer boundaries of the liquid ring Rj 0) there are imposed perturbations £;(0, ¢), such that [£;0, @) | <R (0),
i=1, 2. Expansion of the liquid ring is produced by both the pressure difference p; —p,, where p, is the at-
mospheric pressure on the outer ring surface, and p, =p, Ry, ) is the pressure on the inner surface, and by
the initial mass velocity u(0, r)u(, Ry 0)) =Ry, 0)).
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For such a flow the potential boundary problem with free mobile boundaries without consideration of

gravity can be written in the linear approximation as
ADE, 1, @) = 0; @)
b ; oD . :
T brery = B G |, ™ B 3)
a0 iy 1[/002 .
(5 )hmsy = (5 oy T 2| (T ey = (57 ] =0; @
()

(t ‘P) BOz(t)+ E (t (P)’ i = 1
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where ¢, r, @) is the velocity potential; Rj is the radius of the perturbed ring boundary; p;
ing to the Laplace formula, pis = o/Ry; — o [& -+ 6%E/00%)/ Ris).

Since Laplace equation {2} in the ring permits separation of the variables, by writing Eq. () in the form

Ri(t, @) = Ry(t) + ba(t)cos np, Ryt, @) = Ryy(t)+ ay(f) cos ng, n =1, 2, 3pees 6)

we obtain from Egs. ), (8), @)
D, T, @) = BmHoiln r + (§®),+ (8D),, @)
Rg1 b +.bn ;};_.dn—{-an
(D), = H” —— " cosnp, (8D), = "0‘1"‘;};—"“"— Ry cosng.

The condition of independence of the perturbations of the inner and outer boundaries (€®)1l~r, >0, D)y |rsr, ~ V)
is satisfied if at least Ry ()/Ry )< 0.3, n> 3. Then with consideration of these limitations, imposing initial

perturbations on the outer and inner ring boundaries: ® = Ry Ryln r ++ (30),, @ = BpRy, Inr + (80),, sub-
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stituting these expressions in Eq. @), with consideration of the orthogonality of the functions cos ne on [0, 7],
after transformations we obtain '
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Equations (8), (10) describe the motion of the unperturbed outer and inner ring boundaries, while Egs.
©), (11) describe the amplitude of the perturbations on the outer and inner boundaries, respectively. For a
qualitative analysis of the behavior of perturbation amplitude, we substitute in Egs. @) and (11) byt)=Z,¢) -
Ryg (0)/Ryq &) and ay &) =Upt) Rey (0)/Rst), obtaining

Zod I,Zo=0 and Unpt I,U,=0.
The invariants of these equations have the form

n . (2_1) 1
11:“‘52_ Rgl'_ npR GJ’ I, = Roz [Rgi+(n )U]l

01 | 01

where §01¢), ﬁ02¢) can be obtainedby integrating Egs. (8), (10). It follows fromwell-knowntheory of equatlons
that at 1, > 0, ap &) oscillates during ring expansion, while by t) increases exponentially until I <0, i.e., ROI >
? ~1)0/(PR(]1) From the latter inequality it follows that since n characterizes the frequency of the perturba-
tions, the upper frequency limit of the spectrum of exponentially increasing perturbations has the form

pR R pR2. (0)/2 2nR._. (1) pRE, (1)/2 I AT -
n< ‘/1+‘“%—91“= ’/ 14 byt Gl Ly ]/4We§,‘(f))) = ViWe E (1), 12)

0O 2ar (0 k2, (0)/2

where i“(t) is the dimensionless kinetic energy of a surface layer of liquid of unit thickness.

Criterion (12) may be rewritten in the form n<n* =@ WeE (t))1/2, where n* is the upper frequency limit
of exponentially developing initial perturbations on the outer surface of a ring of an ideal incompressible liquid.
The right side of this inequality coincides to the accuracy of the density of the medium and the exponent with
the empirical parameter W ¢), defining the frequency characteristic of the perturbations developing on the
outer surface of an expanding gas—liquid ring.

Thus, in both cases the frequency characteristics of the developing initial perturbations depend on the
product of the initial Weber number value for the expanding ring and the current value of the specific kinetic
energy of a ring surface layer of unit thickness.
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